MORE EXTENDED MODULAR RELAYS

XMR-T

MORE ADVANCED, HIGH-END IEDs FOR PROTECTING, **MONITORING AND CONTROLLING ELECTRIC** POWER SYSTEMS.

THYTRONIC

XMR-T TRANSFORMER PROTECTION RELAYS

XMR-T is a part of XMORE platform, the complete range of IEDs for Medium Voltage application.

XMR-T the comprehensive solution for two or three windings transformer protection.

Enhancements to protect and analyze power system operation in disturbance conditions:

- ▶ Up to 12 analogue inputs
- 32 sample for cycleOscillography fault recording
- ▶ 64 sample for cycle measurement for accuracy of protection element

HARDWARE AND SOFTWARE MODULARITY

Customization of the product from the basic solution to the more complex configuration:

- ▶ Plug in modules for HW expansion
- Licensable SW Pack
- I/O's cards
- Analogue (PT100, 4-20mA) cards
- ▶ Communication cards

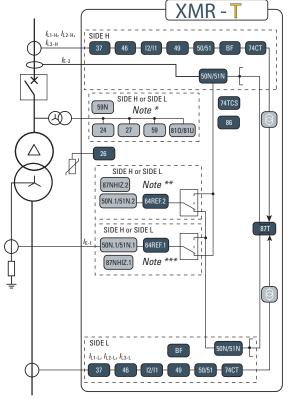
Enhanced Time synchronization solution for SOE recording:

- Precision Time Protocol PTP according to IEC1588
- SNTP

COMMUNICATIONSECURITY

Communication Security through redundancy protocol and Cyber Security package:

- High available Seamless Redundancy support HSR
- Parallel Redundancy Protocol support PRP
- ▶ Rapid Spanning Tree Protocol RSTP
- Advanced built in Cyber Security


Widely implemented in Smart Grid and Substation Automation System:

- IEC61850 Ed.2
- IEC 60870-5-103
- Modbus (Serial/TCP)
- DNP3 (Serial/TCP)

Enhanced tools and solutions for Grid Automation

- ▶ IEC1131 PLC embedded
- Switchgear Monitoring/Control
- Switchgear OPEN/CLOSE local keys
- Multi shot Automatic Reclosing
- Multiple setting Profile
- ▶ CB health monitoring
- CT's monitoring

Standard Protective & control elements HW Pack optional configuration

24 (L or H) 26 27 (L or H) 37 (L, H, T) 46 (L, H, T) 12/11 (L, H, T) 49 (L, H, T) 50/51 (L, H, T) 50N/51N/87NHIZ1[2]-21[3] 59 (L or H) 59N (L or H) 64REF.1 (L or H or T) 64REF.2 (L or H or T) 810/81U (L or H) 87T (L or H) BF Side (L, H, T)

Pt100 thermal probes Undervoltage (Side Lor Side H) Undercurrent (Side L, Side H, Side T) Negative sequence overcurrent (Side L, Side H, Side T) Negative/positive sequence current ratio (Side L, Side H, Side T) Thermal image (Side L, Side H, Side T) Phase overcurrent (Side L, Side H, Side T) Residual overcurrent/ High impedance restricted earth fault Phase overvoltage (Side Lor Side H) Residual overvoltage (Side Lor Side H) Biased restricted differential ground fault (Side L or Side H) Biased restricted differential ground fault (Side L or Side H) Directional earth fault overcurrent Over-Underfrequency (Side Lor Side H) Double slope biased differential for transformers (Side Lor Side H) Circuit breaker failure (Side L, Side H, Side T) CT supervision Trip circuit supervision (Side L, Side H, Side T)

Overflux (Side L or Side H)

Note *: 59N alternative to 24,27,59,810 and 81U Note **: 50N.2/51N.2 alternative to 87NHIZ.2 Note ***: 50N.1/51N.1 alternative to 87NHIZ.1

To enable protection:

- Function 26 (thermometric protection with Pt100 modules)
- Function 86 (Lock-out)

XMR relay needs special hardware modules. So, these functions can be enabled only with the presence of the relative module.

74CT

74TCS (L, H, T)

MEASURING INPUTS WITH INDUCTIVE CTS AND VTS

- Eleven phase current inputs and one residual current input, with nominal currents independently selectable at 1 A or 5 A through sw setting with the addition of an external analog input module
- One residual voltage input, with programmable nominal voltage within range 50...130 V (UER =100 V)

BINARY INPUTS

Up to 53 binary (depending upon configurations) inputs are available with programmable active state (active-ON/ active-OFF) and programmable timer (active to OFF/ON or ON/OFF transitions). The reset of relay can be associated with each digital input.

OUTPUT RELAYS

Up to 31 output relays are available (changeover, make and break contacts); each relay may be individually programmed as normal state (normally energized, de-energized or pulse) and reset mode (manual or automatic).

LOCK-OUT RELAY

Master trip bistable latching relay allows the direct use in tripping circuit eliminating the need of additional auxiliary relay.

MODULAR DESIGN

In order to extend I/O capability, the Xmore hardware can be customized through internal auxiliary boards end external module:

- Output relays
- Binary inputs and external modules:
 - ▼ 8 relaus and 16 digital inputs
 - ▼ Pt100 probe inputs board
 - 32 Inputs board
 - ▼ 6 Current loop output module
 - ▼ 4 Block relays module

BLOCKING INPUT/OUTPUTS

The output blocking circuits of one or several xMore relays, shunted together, must be connected to the input blocking circuit of the protection relay, which is installed upstream in the electric plant.

The output circuit works as a simple contact, whose condition is detected by the input circuit of the upstream protection relay.

Due to increase I/O capacity the following external expansion modules are available:

- XMRI Module 8 relays + 16 digital inputs
- XMR16 Module 16 relays
- XMID32 Module 32 digital inputs
- XMPT Module 8 PT100
- > XMCI Module 6 analogue outputs (4÷20mA)

METERING

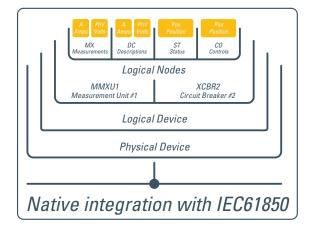
Xmore provides metering values for phase and residual currents, phase and residual voltage, making them available for reading on a display or to communication interfaces.

Input signals are sampled 64 times per period and the RMS value of the fundamental component is measured using the DFT (Discrete Fourier Transform) algorithm and digital filtering.

With DFT the RMS value of 2nd harmonic of phase current is also measured.

On the base of the direct, phase, calculated (min, max,), displacement, sequence, harmonic and demand phase measures are processed.

MMI (MAN MACHINE INTERFACE)


The user interface comprises a membrane keyboard, a backlight LCD wide display, a touchscreen keyboard and sixteen LEDs with customizable functions.

The green OK LED indicates auxiliary power supply and self diagnostics, two LEDs are dedicated to the Start and Trip (yellow for Start, red for Trip).

COMMUNICATION

Multiple communication interfaces are implemented:

- One Ethernet local communication front-end interface for communication with ThyVisor setup software
- Back-end interfaces for communication with remote monitoring and control systems by:
 - ▼ Multiple RS485 port
 - Tethernet TX + RS485
 - Fthernet FX with RS485
 - ▼ Double Ethernet TX
 - ▼ Double Ethernet FX
 - ▼ Double Ethernet FX with RSTP
 - ▼ Double Ethernet TX + RSTP

CONTROL AND MONITORING

Several predefined functions are implemented:

- Activation of four set point profiles
- Phase CTs monitoring (74CT)
- Logic selectivity
- Cold load pickup (CLP) with block or setting change
- Trip circuit supervision (74TCS)
- Second harmonic restraint (inrush)
- Remote tripping
- Circuit Breaker commands and diagnostic

Moreover user defined logic must be customized in accordance with IEC 61131-3 protocol by means programmable logic controller (PLC).

Circuit Breaker

Several diagnostic, monitoring and control functions are provided:

- Health thresholds can be set; when the accumulated duty (SI or SI2t), the number of operations or the opening time exceeds the threshold an alarm is activated
- ▶ Breaker failure (BF); breaker status is monitored by means 52a-52b and/or through line current measurements
- ► Trip circuit supervision (74TCS)
- Breaker control; opening and closing commands can be carried out locally or remotely

Virtual I/C

Through ThyVisor tool the type of operation and links between thirty-two outputs (Virtual Output - VOUT1 ... 32) and thirty-two virtual inputs (Virtual Inputs - VIN1 ... VIN32) may be defined using RPC or IEC 61850 communication protocols over Ethernet network. Special features are:

- Availability of thirty-two inputs and thirty-two outputs independently programmable by the user
- > Simplify wiring using one channel as the Ethernet
- Eliminate the need to install communication devices and / or external conversion
- Significantly reduce costs
- Dynamically change from sw connections and associated functions

The virtual I / O can be usefully employed for:

- Transmit information between protections installed in distance
- Achieve accelerated logic discrimination in which some protection elements can be blocked by the activation of the downstream protection start
- Circuit Breaker commands, Selection of setting profiles, Remote trip, etc...

Logic selectivity

With the aim of providing a fast selective protection system some protective functions may be blocked.

The selectivity logic may be accomplished by:

- output relays and logic inputs
- virtual input and output with messages on Ethernet network

To guarantee maximum fail-safety, the relay performs a run time monitoring for pilot wire continuity and pilot wire shorting. Exactly the output blocking circuit periodically produces a pulse, with small width in order to be ignored as an effective blocking signal by the input blocking circuit of the upstream protection, but suitable to prove continuity of the pilot wire.

Furthermore a permanent activation (or better, with a duration longer than a preset time) of the blocking signal is identified, as a warning for a possible short circuit in the pilot wire or in the output circuit of the downstream protection.

Cold Load Pickup (CLP)

Cold load pickup element prevents unwanted tripping in case of temporary overcurrents produced when a feeder is being connected after an extended outage (e.g. motor starting).

Two different operating modes are provided:

- Each protective element can be blocked for a setting time
- Each threshold can be increased for a setting time

Second harmonic restraint

To prevent unwanted tripping of the protective functions on transformer inrush current, the protective elements can be blocked when the ratio between the second harmonic current and the relative fundamental current is larger than a user programmable threshold. The function can be programmed to switch an output relay so as to cause a blocking protection relays lacking in second harmonic restraint.

SYNCHRONIZATION METHODS

Devices that share the same file server must have synchronized clocks so that the timestamps are consistent.

Two synchronization systems are available:

- SNTP (Network Time Protocol)
- ▶ IEC 1588

SELF DIAGNOSTICS

All hardware and software functions are repeatedly checked and any anomalies reported via display messages, communication interfaces, LEDs and output relaus.

EVENT STORAGE

Several useful data are stored for diagnostic purpose; the events are stored into a non volatile memory.

They are graded from the newest to the older after the "Events reading" command (ThySetter) is issued:

- Sequence of Event Recorder (SER)
 - The event recorder runs continuously capturing in circular mode the last one thousend events upon trigger of binary input/output.
- Sequence of Fault Recorder (SFR)
 - The fault recorder runs continuously capturing in circular mode the last twenty faults upon trigger of binary input/output and/or element pickup (start-trip)
- ▶ Trip counters

DIGITAL FAULT RECORDER (OSCILLOGRAPHY)

Upon trigger of tripping/starting of each function or external signals, the relay records in COMTRADE format:

- Oscillography with instantaneous values for transient analysis
- RMS values for long time periods analysis
- Logic states (binary inputs and output relays)

Note - A license for Digital Fault Recorder function is required. All records are stored in non-volatile memory

CYBERSECURITY

Cybersecurity features implemented in XMR-P help to mitigate cyber threats.

- Secured communication between XMR-P protection relays and associated tool by **SSH** (**S**ecure **SH**ell) protocols
- Compliant to NERC CIP, ISO/IEC 27001:2013 and IEC62351 standard requirements
- Password based user authentication
- ▶ Role Based Access Control (RBAC) authorization management
- Secured log storage (Syslog Service)

SPECIFICATIONS

GENERAL

MECHANICAL DATA

Mounting: flush or rack Mass (flush mounting case) 5 kg

INSULATION TESTS

EN 60255-5, IEC60255-27 Reference standards High voltage test 50Hz 2 kV 60 s Impulse voltage withstand (1.2/50 ms) 5 kV >100 MW Insulation resistance

VOLTAGE DIP AND INTERRUPTION

EN 61000-4-29 Reference standards

EMC TESTS FOR INTERFERENCE IMMUNITY

1 MHz damped oscillatory wave	EN 60255-22-1	1 kV-2.5 kV
Electrostatic discharge	EN 60255-22-2	8 kV
Fast transient burst (5/50 ns)	EN 60255-22-4	4 kV
Conducted radio-frequency fields	EN 60255-22-6	10 V
Radiated radio-frequency fields	EN 60255-4-3	10 V/m
High energy pulse	EN 61000-4-5	2 kV
Magnetic field 50 Hz	EN 61000-4-8	1 kA/m
Damped oscillatory wave	EN 61000-4-12	2.5 kV
Ring wave	EN 61000-4-12	2 kV
Conducted common mode (0150 kHz)	EN 61000-4-16	10 V

EMISSION

Reference standards EN 61000-6-4 (ex EN 50081-2) Conducted emission 0.15...30 MHz Class A Radiated emission 30...1000 MHz Class A

CLIMATIC TESTS

Reference standards IEC 60068-x, ENEL R CLI 01, CEI 50

MECHANICAL TESTS

EN 60255-21-1, 21-2, 21-3 Reference standards

SAFETY REQUIREMENTS

Reference standards IEC60255-27 Pollution degree 250 V Reference voltage Overvoltage Ш Pulse voltage 5 kV Reference standards EN 60529 Protection degree:

IP54 Front side Rear side, connection terminals IP20

ENVIRONMENTAL CONDITIONS

Ambient temperature -25...+70 °C Storage temperature -40...+85 °C 10...95 % Relative humidity 70...110 kPa Atmospheric pressure

CERTIFICATIONS

EN 50263 Product standard for measuring relays CE conformity

EMC Directive 2004/108/EC Low Voltage Directive 2006/95/EC Type tests IEC 60255-6

COMMUNICATION INTERFACES

Local:

▶ Ethernet 100BaseT 100 Mbps

Network:

PS485 1200...57600 bps Ethernet 100BaseT [1] 100 Mbps

ModBus® RTU/IEC 60870-5-103/DNP3, Protocol TCP/IP. IEC61850 Level A

Note [1] Two redundant port selectable with TX + TX or FX + FX connections. The secondary port is activated in the event of failure of the primary port or by means of hw-sw switching command.

INPUT CIRCUITS

AUXILIARY POWER SUPPLY UAUX

24 ...110 V_{AC}/V_{DC} Nominal value (range) 110...230 V_{AC}/V_{DC} Operative range (each one of the above nominal values) 19...132 V_{AC} V_{DC}

75 V_{AC}/V_{DC} 300 V_{AC} Maximum (energized relays, Ethernet FX) 25 W (35 VA)

PHASE CURRENT INPUTS WITH INDUCTIVE CTS

Rated current In 1 A or 5 A selectable by sw Permanent overload 25 A

Thermal overload (1 s) 500 A Rated consumption (for any phase) \leq 0.002 VA (In = 1 A)

 \leq 0.04 VA (In = 5 A) Connections M4 terminals

RESIDUAL CURRENT INPUT

Rated current IEn 1 A or 5 A selectable by sw Permanent overload 25 A

Thermal overload (1 s) 500 A Rated consumption \leq 0.006 VA (I_{En} = 1 A), \leq 0.012 VA (I_{En} = 5 A)

M4 terminals Connections

RESIDUAL VOLTAGE INPUT WITH INDUCTIVE VTS

Reference voltage U_{FR} 100 V Nominal voltage $U_{\rm Fn}$ 50...130 V adjustable via sw Permanent overload / 1s overload 1.3 $U_{\rm En}$ / 2 $U_{\rm En}$ Rated consumption ≤ 0.5 VA

BINARY INPUTS

Quantity 7..53 Type dry inputs Max permissible voltage 19...265 Vac/19...300 Vdc Max consumption, energized 3 mA

7..31

10⁵ operations

OUTPUT CIRCUITS

OUTPUT RELAYS

Quantity

Type of contacts (default):
K1, K2 changeover (SPDT, type C)
K3, K4, K5, K6, K31 make (SPST-NO, type A)
Rated current 8 A
Rated voltage/max switching voltage
Short duration current (0,5 s) 30 A
Make 1000 W/VA
Minimum switching load 300 mW (5 V/ 5 mA)

Breaking capacity:

Breaking capacity:

Direct current (L/R = 40 ms) 50 W
Alternating current (λ = 0,4) 1250 VA
Make 1000 W/VA
Short duration current (0,5 s) 30 A
Minimum switching load 300 mW (5 V/ 5 mA)
Life:
Mechanical 106 operations

BLOCK INPUT (LOGIC SELECTIVITY)

Quantity 1
Type optocoupler

BLOCK OUTPUT (LOGIC SELECTIVITY)

Quantity 1
Type optomosfet

LEDS

Electrical

Quantity	21
ON/fail (green)	1
Start (yellow)	1
▶ Trip (red)	1
Local	1
Remote	1
Allocatable (green/yellow/red)	16

MAIN SETTINGS

RATED VALUES

Voltage measure $U_{\scriptscriptstyle F}$ or URelay nominal frequency (f_n) 50, 60 Hz Relay residual nominal current (I_{En}) 1A, 5A Residual CT nominal primary current (I_{Enp}) 1 A...10 kA Relay nominal voltage (phase to phase) - (U_) 50...130 V or 200...520 V Relay nominal voltage (phase-to-ground) $E_{\rm n} = U_{\rm n} / \sqrt{3}$ $U_{\text{ECN}} = U_{\text{n}} \cdot \sqrt{3} = 3 \cdot E_{\text{n}}$ Relay residual nominal voltage (calculated) Relay phase nominal current (I_) 1A.5A Phase CT nominal primary current (In) 1 A...10 kA Relay residual nominal voltage (direct measure) (U₅) 50...130 V Residual primary nominal voltage (phase-to-phase) \cdot $\sqrt{3}$ (U_{Enp}) 50 V...500 kV

BINARY INPUT TIMERS

ON delay time (IN1 t_{ON} ...IN10 t_{ON}) 0.00...100.0 s OFF delay time (IN1 t_{OFF} , IN2 t_{OFF}) 0.00...100.0 s

Logic Active-ON/Active-OFF

RELAY OUTPUT TIMERS

Minimum pulse width 0.000...0.500 s

INPUT SEQUENCE (SIDE L, SIDE H, SIDE T)

Phase current sequence (I-SequenceL)

Phase current sequence (I-SequenceL)

Phase current sequence (I-SequenceH)

IL1-IL2-IL3, IL1-IL3-IL2, L2, IL1, IL3,.....

Phase current sequence (I-SequenceT)

IL1-IL2-IL3, IL1-IL3-IL2, L2, IL1, IL3,.....

POLARITY

A1-A2 (A1-A2 POL) polarity	NORMAL/REVERSE
A3-A4 (A3-A4 POL) polarity	NORMAL/REVERSE
A5-A6 (A5-A6 POL) polarity	NORMAL/REVERSE
A7-A8 (A7-A8 POL) polarity	NORMAL/REVERSE
B1-B2 (B1-B2 POL) polarity	NORMAL/REVERSE
B3-B4 (B3-B4 POL) polarity	NORMAL/REVERSE
B5-B6 (B5-B6 POL) polarity	NORMAL/REVERSE
B7-B8 (B7-B8 POL) polarity	NORMAL/REVERSE
C1-C2 (C1-C2 POL) polarity	NORMAL/REVERSE
C3-C4 (C3-C4 POL) polarity	NORMAL/REVERSE
C5-C6 (C5-C6 POL) polarity	NORMAL/REVERSE
C7-C8 (C7-C8 POL) polarity	NORMAL/REVERSE

PROTECTION FUNCTIONS

Full description about parameters, thresholds and timings ranges is available in relevant equipment documentation.

BASE CURRENT IB [1] (SIDE L, SIDE H, SIDE T)

Base current (I_B) 0.10...2.50 I_n

Note - For the CTs versions the basic current $I_{\rm B}$ represents the rated current of the protected device (line, transformer, motor...) referred to the nominal current of the CT's. If the secondary rated current of the line CT's equals the rated current of the relay, as usually happens, the $I_{\rm B}$ value is the ratio between the rated current of the protected element and the CT's primary rated current.

STARTING CONTROL SET

CLP Input source (CLP Source) IRUN/CB IRUN Threshold (IRUN) O.10 $I_{\rm B}$

OVEREXCITATION - 24

(U/f)AL Element

► Alarm threshold definite time (U/f)ALdef

O.50...2.00 Un/fn

Operating time t(U/f)ALdef

0.10...100.0 s

(U/f)> Element

Curve type (U/f>Curve)

DEFINITE, IEC/BS A, B, C

Definite time

First threshold definite time (U/f)>def 0.50...2.00 Un/fn
Operating time (t(U/f)>def) 0.10...100.0 s

Inverse time

First threshold inverse time (U/f)>inv 0.50...2.00 Un/fn
Operating time (t(U/f)>inv) 0.10...100.0 s

(U/f)>> Element

Second threshold definite time (U/f)>>def

0.50...2.00 Un/fn
Operating time (t(U/f)>>def)

0.10...100.0 s

THERMAL PROTECTION WITH PT100 THERMOMETRIC PROBES - 26

The measure of temperature is acquired by a MPT module with eight PT100 thermometric probes (RTD Resistive Thermal Device), for each thermometric probe an alarm (\mathbf{Th}_{ALx}) and a trip adjustable threshold are provided (\mathbf{Th}_{XL}), with adjustable operating time (\mathbf{t}_{ThALx} and $\mathbf{t}_{Th>x}$).

UNDERVOLTAGE - 27

U< Curve type (U<Curve)

Common configuration:

Voltage measurement type for 27 (Utype27)
 27 Operating logic (Logic27)
 Uph-ph/Uph-n
 AND/OR

U< Element

Definite time ▶ 27 First threshold definite time (U<def) 0.05...110 Un/En

▶ U<def Operating time (tU<def)</p> Inverse time

27 First threshold inverse time (U<inv) 0.05...1.10 Un/En U<inv Operating time (tU<inv) 0.10...100.0 s

U<< Element

Definite time

> 27 Second threshold definite time (U<<def) 0.05...1.10 Un/En U<<def Operating time (tU<<def) 0.03...100.0 s

UNDERCURRENT - 37 (SIDE L, SIDE H, SIDE T)

Each phase current is compared with adjustble threshold ($I<_{del}$), if at least one of the three currents goes down (**LOGIC OR**) or when all the three currents go down (**LOGIC AND**) the threshold a Start command is issued, after expiry of associated operate time ($t<_{del}$), a trip command is issued; if instead the currents exceed the threshold, the element is restored.

NEGATIVE SEQUENCE FOR LINE-TRANSFORMER - 46 (SIDE L, SIDE H, SIDE T)

I₂> Element

 I_2 > Curve type DEFINITE, I_2 > Reset time delay $(t_2$ >_{RES}) 0.00...100.0 s

Definite time

▶ 46LT First threshold definite time ($I_{2>\text{def}}$) 0.100...10.00 I_n • $I_{2>\text{def}}$ Operating time ($I_{2>\text{def}}$) 0.03...200 s

Inverse time

▶ 46LT First threshold inverse time $(l_2>_{inv})$ 0.100...10.00 l_n 0.02...60.0 s

I₂>> Element

 l_2 >> Reset time delay (t_2 >>_{RES}) 0.00...100.0 s

Definite time for CTs versions

▶ 46LT Second threshold definite time ($l>>_{del}$) 0.100...40.00 I_n $I_2>>_{del}$ 0.03...10.00 s

NEGATIVE SEQUENCE CURRENT / POSITIVE SEQUENCE CURRENT RATIO - 12/11 (SIDE L, SIDE H, SIDE T)

I₂₁> Element

 I_{21CLP} Activation time (t_{21CLP}) 0.00...100.0 s

Definite time

 I_2/I_1 First threshold definite time $(I_{21}>_{\text{def}})$ 0.10...1.00 $I_{21}>_{\text{def}}$ 0.04..15000 s

THERMAL IMAGE FOR LINE-TRANSFORMER - 49 (SIDE L, SIDE H, SIDE T)

Common configuration:

 $\begin{array}{lll} & \text{Initial thermal image $\Delta\theta_{\text{IN}}$ (Dth_{\text{IN}}) } & \text{0.0...1.0 $\Delta\theta_{\text{B}}$} \\ & \text{Reduction factor at inrush } (K_{\text{INR}}) & \text{1.0...3.0} \\ & \text{49 Second harmonic restraint (Dth}_{\text{2ndh-REST}}) & \text{OFF/ON} \\ \end{array}$

DthAL1 Element

▶ 49 First alarm threshold $\Delta\theta_{\text{AL1}}(Dth_{\text{AL1}})$ 0.3...1.0 $\Delta\theta_{\text{B}}$

DthAL2 Element

▶ 49 Second alarm threshold $\Delta\theta_{AL2}$ (Dth_{AL2}) 0.5...1.2 $\Delta\theta_{B}$

Dth> Element

 \blacktriangleright 49 Trip threshold $\Delta\theta$ (*Dth>*) 1.100...1.300 $\Delta\theta_{\rm B}$

PHASE OVERCURRENT - 50/51 (SIDE L, SIDE H, SIDE T)

I> Element

► I> Curve type (I>Curve)	DEFINITE,
I_{CLP} > Activation time (t_{CLP})	0.00100.0 s
► I> Reset time delay (t> _{RES})	0.00100.0 s

Definite time for CTs versions

> 50/51 First threshold definite time (I>_{def}) 0.100...40.0 I_n 0.04...200 s

Inverse time

> 50/51 First threshold inverse time ($I >_{inv}$) 0.100...20.00 I_n > $I >_{inv}$ Operating time ($I >_{inv}$) 0.02...60.0 s

I>> Element

Type characteristic DEFINITE or I^2t I>> Reset time delay ($t>>_{RES}$) 0.00...100.0 s

Definite time for CTs versions

> 50/51 Second threshold definite time ($I>>_{def}$) 0.100...40.0 I_n > $I>>_{def}$ Operating time ($I>>_{def}$) 0.03...10.00 s

Inverse time

> 50/51 Second threshold inverse time (/>>_{inv}) 0.100...20.00 /_n > 1/>_{inv} Operating time (t>>_{inv}) 0.02...10.00 s

I>>> Element

>>> Reset time delay (t>>>_{RES}) 0.00...100.0 s

Definite time for CTs versions

DEFINITE, INVERSE [2]

0.03...100.0 s

.			
50/51 Third threshold definite time (/>>> _{def})	0.10040.0 <i>I</i> _n	LOW IMPEDANCE RESTRICTED EARTH FA	AULT - 64REF (1 - 2)
>>> _{def} Operating time (t>>> _{def})	0.0310.00 s	Minimum threshold (IREF>)	0.052.00 I _{En}
RESIDUAL OVERCURRENT - 50N/51N OR	HIGH	Intentional delay (tREF>)	0.0360.00 s
IMPEDANCE RESTRICTED EARTH FAULT		,	
(SIDE L, SIDE H, SIDE T)	O711 (1 =)	DIRECTIONAL EARTH FAULT - 67N	
I _E > Element		Common configuration:	
I _E > Curve type (I _E >Curve)	DEFINITE,	▶ 67N Operating mode (<i>Mode67N</i>)	I/I·cos
$I_{\rm F}$ Reset time delay ($t_{\rm F}$ $>_{\rm RES}$)	0.00100.0 s	Residual voltage measurement type for 6	7N - direct/calculated
E TOOST INTO GOTAG (LE RES)	0.0000.0	(3VoType67N) [3]	$U_{\rm F}/U_{\rm FC}$
Definite time		▶ 67N Multiplier of threshold for insensitive	zone (<i>M</i>) 1.510.0
\triangleright 50N/51N First threshold definite time ($I_{\rm E}$ _{def})	0.00210.00 I _{En}	67N Operating mode from 74VT internal (74VTint67N)
I _E > _{def} within CLP (I _{ECLP>def})	0.00210.00 I _{En}		Block/Not directional
I _E > _{def} Operating time (t _E > _{def})	0.04200 s	67N Operating mode from 74VT external	(74VText67N)
Inverse time			Block/Not directional
50N/51N First threshold inverse time (I _E > _{inv})	0.0102.00 I _{En}	I _{ED} > Element	DEFINITE
I _E > _{inv} within CLP (I _{ECLP>inv})	0.0102.00 I _{En}	I _{ED} > Curve type	DEFINITE
► I _E > _{inv} Operating time (t _E > _{inv})	0.0260.0 s	I_{ED} Reset time delay (t_{ED} I_{RES})	0.00100.0 s
I _E >> Element		Definite time	
▶ I _F >> Reset time delay (t _F >> _{RES})	0.00100.0 s	67N First threshold definite time (I_{ED} > _{def} - U_{ED} > _{def})	0.000 40.00 /
Definite time		Residual current pickup value	0.00210.00 I _{En}
\triangleright 50N/51N Second threshold definite time ($I_{\rm F}>_{\rm def}$	0.00210.00 I _{En}	Residual voltage pickup value	0.0040.500 U _{En}
I _E >> _{def} within CLP (I _{ECLP>>def})	0.00210.00 I _{En}	Characteristic angleHalf operating sector	0359° 1180°
I _E >> _{def} Operating time (t _E >> _{def})	0.0310.00 s	I_{ED} _{def} Operating time (t_{ED} _{def})	0.05200 s
I _c >>> Element			0.03200 \$
I_{ECLP} >>> Reset time delay $(t_{E}$ >>> _{RES})	0.00100.0 s	Inverse time	
	0.00100.03	67N First threshold inverse time $(I_{ED}>_{inv} - U_{ED}>_{inv})$ Residual current pickup value	0.0022.00 I _{FD}
Definite time \triangleright 50N/51N Third threshold definite time ($I_{\rm E}>>>_{\rm clof}$)	0.00210.00 I _{En}	Residual voltage pickup value	$0.0022.00 I_{ED}$ $0.0040.500 U_{En}$
	0.00210.00 I _{En}	Characteristic angle	0359°
$I_{\text{ECLP}}>>>_{\text{def}}$ within CLP ($I_{\text{ECLP}}>>>_{\text{def}}$) $I_{\text{ECLP}}>>>_{\text{def}}$ Operating time ($t_{\text{E}}>>>_{\text{def}}$)	0.0310.00 s	Half operating sector	1180°
	0.000.00	I_{ED} Operating time (t_{ED})	0.0260.0 s
OVERVOLTAGE - 59		I _{ED} >> Element	
Common configuration:	[4]	I_{ED} Curve type (I_{ED} >>Curve)	DEFINITE
Voltage measurement type for 59 (Utype59)	pii-pii pii-ii	I_{ED} >> Reset time delay (t_{ED} >> _{RES})	0.00100.0 s
▶ 59 Operating logic (Logic59)	AND/OR	Definite time	
U> Element		67N Second threshold definite time $(I_{ED}>>_{def}$ - U_{ED}	>> 1
▶ U> Curve type (U>Curve) DEF	FINITE, INVERSE [2]	Residual current pickup value	0.00210.00 I _{En}
Definite time		Residual voltage pickup value	0.0040.500 U _{En}
\triangleright 59 First threshold definite time (U > _{def})	0.501.50 U _n /E _n	Characteristic angle	0359
U> _{def} Operating time (t _U > _{def})	0.03100.0 s	▶ Half operating sector	1180°
Inverse time		I _{ED} >> _{def} within CLP (I _{EDCLP} >> _{def})	0.00210.00 I _{En}
▶ 59 First threshold inverse time (<i>U</i> > _{inv})	0.501.50 U _n /E _n	I _{ED} >> _{def} Operating time (t _{ED} >> _{def})	0.0510.00 s
U> _{inv} Operating time (t _U > _{inv})	0.10100.0 s	Inverse time	
U>> Element		67N Second threshold inverse time ($I_{ED} \gg_{inv}$ - U_{ED}	>>;,,,,)
		Residual current pickup value	0.0022.00 I _{Fn}
Definite time 59 Second threshold definite time (//>>	050 15011/5	Residual voltage pickup value	0.0040.500 U _{En}
59 Second threshold definite time (<i>U</i> >> _{def})	0.501.50 U _n /E _n 0.03100.0 s	Characteristic angle	0359°
U>> _{def} Operating time (t _U >> _{def})	0.03100.0 \$	Half operating sector	1180°
RESIDUAL OVERVOLTAGE - 59N		I_{ED} _{inv} within CLP (I_{EDCLP})	0.0022.00 I _{En}
Common configuration:		I_{ED} _{inv} Operating time (t_{ED})	0.0210.00 s
▶ 59N Operating mode from 74VT external (74VTex	kt59N) OFF/Block	I _{ED} >>> Element	
U _E > Element		\triangleright CLP Activation time ($t_{\text{EDCLP}>>>}$)	0.00100.0 s
	EFINITE, INVERSE	I_{ED} >>> Reset time delay $(t_{ED}$ >>> _{RES})	0.00100.0 s
$V_{\rm E}$ Reset time delay ($t_{\rm UE>RES}$)	0.00100.0 s	Definite time	
Definite time		67N Third threshold definite time (I_{ED} >>> _{def} - U_{ED} >	>> _{dof})
\triangleright 59N First threshold definite time ($U_{\rm E}$ _{def})	0.010.70 <i>U</i> _{En}	Residual current pickup value	0.00210.00 I _{En}
U_{E} _{def} Operating time (t_{UE} _{def})	0.07100.0 s	Residual voltage pickup value	0.0040.500 U _{En}
Inverse time		Characteristic angle	0359°
\triangleright 59N First threshold inverse time ($U_{\rm E}$ _{inv})	0.010.50 <i>U</i> _{En}	Half operating sector	1180°
$\bigcup_{E} \mathcal{I}_{inv}$ Operating time ($t_{UE} \mathcal{I}_{inv}$)	0.10100.0 s	I _{ED} >>> _{def} within CLP (I _{EDCLP} >>> _{def})	0.00210.00 I _{En}
U _E >> Element		I_{ED} \rightarrow_{def} Operating time (t_{ED} \rightarrow_{def})	0.0510.00 s
$U_{\rm E}$ >> Reset time delay ($t_{\rm UE}$ >>RES)	0.00100.0 s	I _{ED} >>>> Element	
\triangleright 59N Second threshold definite time ($U_{\rm E}$)	0.010.70 <i>U</i> _{En}	CLP Activation time ($t_{EDCLP>>>>}$)	0.00100.0 s
$U_{\rm E}$ >>def Operating time ($t_{\rm UE}$ >> _{def})	0.07100.0 s	I_{ED} >>>> Reset time delay (t_{ED} >>>> _{RES})	0.00100.0 s
U_>>> Element		Definite time	
U_{E} V Reset time delay (t_{UE})	0.00100.0 s	67N Fourth threshold definite time (I_{ED} >>>> $_{def}$ - U_{I}	-D>>>>
\triangleright 59N Third threshold definite time ($U_E \gg_{def}$)	0.010.70 <i>U</i> _{En}	Oet - I	LO UGIF
U>>>def Operating time (t >>>)	0.07.100.0 s		

0.07...100.0 s

 $ightharpoonup U_{\rm E}>>>$ def Operating time ($t_{\rm UE}>>>_{\rm def}$)

THYTRONIC

First stretch slope percentage (K1)

First threshold operating time

Second stretch slope percentage (K2)

Second stretch Intersection with vertical axis (Q)

10...50%

25...100%

0.04 s

0.00...3.00 Inref

 $0.002...10.00\ I_{\rm En}$

0...359°

1...180°

0.004...0.500 *U*_{En}

▶ Residual current pickup value

Residual voltage pickup value

► Characteristic angle

► Half operating sector

Half operating sector	1180°	First threshold operating time	0.04 s
/ _{ED} >>>> _{def} within CLP (/ _{EDCLP} >>>> _{def})	0.00210.00 I _{En}	Intentional delay (td>)	0.0060.00 s
$I_{ED}>>>_{def}$ Operating time $(t_{ED}>>>>_{def})$	0.0510.00 s	Id>> Element Definite time	
IED>>>> Element			0 E 20 00 Invot
CLP Activation time ($t_{EDCLP>>>>}$)	0.00100.0 s	Second threshold definite time (ld>>)	0.530.00 Inref
CLF Activation time (t _{EDCLP>>>>})		Second threshold operating time	0.03 s
I_{ED} >>>> Reset time delay (t_{ED} >>>> $_{RES}$)	0.00100.0 s	Intentional delay (td>>)	0.0060.00 s
Definite time		DDEAVED EATILIDE DE (SIDE I SIDE II	SIDE TI
67N Fifth threshold definite time ($I_{ED}>>>>_{def}$ - $U_{ED}>>>$	>>>>)	BREAKER FAILURE - BF (SIDE L, SIDE H, S	•
Residual current pickup value	0.00210.00 I _{En}	BF Phase current threshold $(I_{BF}>)$	0.051.00 <i>I</i> _n
	0.00210.00 I _{En}	BF Residual current threshold (I _{EBF} >)	0.012.00 I _{En}
Residual voltage pickup value	0.0040.500 U _{En}	BF Time delay (t_{BF})	0.0610.00 s
Characteristic angle	0359°		
Half operating sector	1180°	SELECTIVE BLOCK - BLOCK2	
I _{ED} >>>> _{def} within CLP (I _{EDCLP} >>>> _{def})	0.00210.00 I _{En}	SELECTIVE BEOOK BEOOKE	
$I_{ED}>>>>_{def}$ Operating time $(t_{ED}>>>>_{def})$	0.0510.00 s	Selective block IN:	
		BLIN Max activation time for phase prot. (t _{B-IPh})	0.1010.00 s
Intermittent ground faults discrimination		BLIN Max activation time for ground prot. (t _{B-IE})	0.1010.00 s
$ ightharpoonup$ Start 59N reset time delay ($t_{ED>6RRIC59N}$)	0.012.00 s		0
Start 67N reset time delay (t _{ED>6RRIC67N})	0.012.00 s	Selective block OUT:	
Residual voltage threshold (I _{ED>6-UE>})	0.0401.500	BLOUT Dropout time delay for phase element	$ts(t_{F-IPh}) 0.001.00 s$
Poperate time $(t_{ED}>_6)$	0.0560.0 s	BLOUT Drop-out time delay for ground elemer	nts (t _{F-IE}) 0.001.00 s
Maximum failure time for inhibition $(t_{ED} >_{6lnb})$	0.0560.0 s		
		INTERNAL SELECTIVE BLOCK - BLOCK4	
Inhibition holding time $(t_{ED}>_{61s})$	0.0560.0 s		, nhann nyatootiana
Evolutive ground faults discrimination		Output internal selective block dropout time for	
Start 59N reset time delay $(t_{ED>7RRIC})$	0.012.00 s	(t_{F-IPh})	0.0010.00 s
Observation activation delay (t _{ED>7RAO})	0.012.00 s	Output internal selective block dropout time for	
Residual voltage threshold (I _{ED} > _{7-UE})	0.0401.500 U _{Fn}	$(t_{F-\!IE})$	0.0010.00 s
	0.0401.500 O _{En}		
Observation time $(t_{ED}>_{7-O})$	0.0560.0 \$	SECOND HARMONIC RESTRAINT - 2ndh-	REST (SIDE I
OVERFREQUENCY - 810			KEST (SIDE E,
f> Element		SIDE H, SIDE T)	
		Second harmonic restraint threshold (I_{2ndh} >)	1050 %
Definite time	4000 4000 ($I_{2\text{ndh}}$ > Reset time delay ($t_{2\text{ndh}}$ >RES)	0.00100.0 s
810 First threshold definite time (f> _{def})	1.0001.200 f _n		
f> _{def} Operating time (t _f > _{def})	0.05100.0 s		
f>> Element		CT SUPERVISION - 74CT (SIDE L, SIDE H,	, SIDE T)
Definite time		74CT Threshold (S<)	0.100.95
▶ 810 Second threshold definite time (f>> _{def})	1.0001.200 f _p	74CT Overcurrent threshold (I*)	0.101.00 I _n
	0.05100.0 s	S< Operating time (t_s <)	0.03200 s
\triangleright f>> _{def} Operating time (t _f >> _{def})	0.05100.0 \$	o operating time (ts)	0.002000
UNDERFREQUENCY - 81U		CIDCUIT DDEAKED CUDEDVICION - 74TO	_
f< Element		CIRCUIT BREAKER SUPERVISION - 74TC	
Definite time		Number of CB trips (N.Open)	010000
	0.8001.000 f _n	Cumulative CB tripping currents (SumI)	05000 <i>I</i> _n
81U First threshold definite time (f<		CB opening time for I 2 t calculation (t_{break})	0.051.00 s
$f <_{def}$ Operating time ($t_f <_{def}$)	0.05100.0 s	Cumulative CB tripping I^2t (SumI^2t)	$05000 I_n^2.s$
f<< Element		CB max allowed opening time (t_{break})	0.051.00 s
Definite time			
81U Second threshold definite time (f< _{def})	0.8001.000 f _n	PILOT WIRE DIAGNOSTIC	
f< _{def} Operating time (t _f < _{def})	0.05100.0 s	BLOUT1 Diagnostic pulses period OFF -	0.1-1-5-10-60-120 s
f<<< Element		BLIN1 Diagnostic pulses control time interval (Puls	eBLIN1)
Definite time		OFF -	0.1-1-5-10-60-120 s
▶ 81U Third threshold definite time (f< _{def})	0.8001.000 f _n		
$ ightharpoonup f$ $ ightharpoonup f$ $ ightharpoonup f$ Operating time (t_f $rac{def}{def}$)	0.05100.0 s	DEMAND MEASURES	
f<<< Element	0.0000.0 3	Fixed demand period (t_{Fix})	160 min
Definite time		Rolling demand period (t_{ROI})	160 min
	0.000 1.000 f	Number of cycles for rolling on demand (N_{ROI})	124
81U Fourth threshold definite time (f<	0.8001.000 f	2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
f< _{def} Operating time (t _f < _{def})	0.05100.0 s		
		ARC FLASH (SIDE L - SIDE H - SIDE T)	
DIFFERENTIAL FOR TRANSFORMER - 87	G-87M-87T	Measure Mode (ARC Measure)	14 samples
Hammanda madratud		,	000 ms (step 1 ms)
Harmonic restraint		•	0.00 In (step 0.01 In)
2 nd harmonic restraint (2nd-REST>)	1080% ld		0.00 ln (step 0.01 ln)
5 th harmonic restraint (5th-REST>)	1080% Id	Test fibers timer	, , ,
Restraint reset intentional delay (tHREST-RE	S) 0.0010.00 s	restribers tillier	0240s (step 1s)
Cross-harmonic restraint enabling (CROSS I	H-RES) ON/OFF		

ON/OFF

ON/OFF

0.00...0.50 s

0.05...2.00 Inref

Cross-harmonic restraint enabling (CROSS H-RES)

Saturation detector reset intentional delay (tSat-Det-RES)

Saturation detector enable (Sat-Det)

First threshold definite time (Id>)

CT saturation detector

Id> Element Definite time

METERING & RECORDING

Full description about measures is available in relevant equipment documentation.

Typology	Measure	Symbol
	Locked frequency	f _L
	U voltage frequency	f _U
	Phase currents (Side L - SideH - Side T)	
Direct		I _{L1T} , I _{L2T} , I _{L3T}
	RMS value of fundamental com. for residual current 1 RMS value of fundamental com. for residual current 2	I _{E1}
	U phase to phase voltage	I _{E2}
	Residual voltage	U _E
	Compensated phase current (Side L - Side H - Side T)	I _{L1cL} I _{L1cH}
I 1 phace	Ctabilization phase a went	I _{L1cT}
L1 phase	Stabilization phase current Differential phase current	I _{SL1}
	2nd harmonic of differential phase current	I _{DL1}
	5 th harmonic of differential phase current	I _{DL1-2} nd I _{DL1-2} th
	- Harrist and Carlotte and Princes Carlotte	I _{L2cL}
	Compensated phase current (Side L - Side H - Side T)	I _{L2cH}
L2 phase	Stabilization phase current	I _{SL2}
·	Differential phase current	I _{DL2}
	2 nd harmonic of differential phase current	I _{DL2-2nd}
	5th harmonic of differential phase current	I _{DL2-2} th
		I _{L3cL}
	Compensated phase current (Side L - Side H - Side T)	I _{L3cH}
12	Chala ilianti an alla ana an annont	I _{L3cT}
L3 phase	Stabilization phase current	I _{SL3}
	Differential phase current 2nd harmonic of differential phase current	I _{DL3}
	5 th harmonic of differential phase current	I _{DL3-2th}
	Calculated residual current (Side L - Side H - Side T	I _{ECL}
		I _{ECH}
		I _{ECT}
	Stabilization current 1	I _{ES1}
	Stabilization current 2	I _{ES2}
		DThetaL
	Thermal image	DThetaH
		DThetaT
Calculated	Flux U _{max/f}	U/f
Culcululed	Maximum current between I _{L1L} -I _{L2L} -I _{L3L}	I _{LmaxL}
	Minimum current between I _{L1L} -I _{L2L} -I _{L3}	LminL
	Average current between I _{L1L} -I _{L2L} -I _{L3}	ILL
	Maximum current between I _{L1H} -I _{L2H} -I _{L3H}	LmaxH
	Minimum current between I _{L1H} -I _{L2H} -I _{L3H}	I _{LminH}
	Average current between I _{L1H} -I _{L2H} -I _{L3H}	I _{LH}
	Maximum current between I _{L1T} -I _{L2T} -I _{L3T}	I _{LmaxT}
	Minimum current between I _{L1T} -I _{L2T} -I _{L3T}	I _{LminT}
	Average current between I _{L1T} -I _{L2T} -I _{L3T}	I _{LT}
Displacement	Displacement angle of U _E respect to I _{E2}	PhiE

Typology	Measure	Symbol
	Positive sequence current (Side L)	I _{1L}
	Negative sequence current (Side L)	I _{2L}
	Negative sequence/positive sequence current ratio (Side L)	I _{2L} /I _{1L}
	Positive sequence current (Side H)	I _{1H}
Sequence	Negative sequence current (Side H)	I _{2H}
	Negative sequence/positive sequence current ratio (Side H)	I _{2H} /I _{1H}
	Positive sequence current (Side T)	I _{IT}
	Negative sequence current (Side T)	I _{2T}
	Negative sequence/positive sequence current ratio (Side T)	I _{2T} /I _{1T}
	2 nd harmonic of phase currents (Side L)	I _{L1L3-2} nd
	Max of the 2^{nd} harmonic phase currents/Fundamental component percentage ratio I_{2nd}/I_L (Side L)	I _{-2ndL} /I _{LL}
	2 nd harmonic of phase currents (Side H)	I _{L1H3-2nd}
2 nd Harmonic	Max of the 2^{nd} harmonic phase currents/Fundamental component percentage ratio I_{2nd}/I_L (Side H)	I _{-2ndH} /I _{LH}
	2 nd harmonic of phase currents (Side T)	I _{L1T3-2} nd
	Max of the $2^{\rm nd}$ harmonic phase currents/Fundamental component percentage ratio ${\rm I}_{\rm 2nd}$ / ${\rm I}_{\rm L}$ (Side T)	I _{-2ndT} /I _{LT}
D	Phase fixed currents demand	I _{L13FIXL}
Demand phase	Phase rolling currents demand	I _{L13ROLL}
(Side L)	Phase peak currents demand	I _{L13MAXL}
(Olde L)	Phase minimum currents demand	I _{L13MINL}
	Phase fixed currents demand	I _{L13FIXH}
Demand phase	Phase rolling currents demand	I _{L13ROLH}
(Side H)	Phase peak currents demand	I _{L13MAXH}
(Side 11)	Phase minimum currents demand	I _{L13MINH}
Demand	Phase fixed currents demand	I _{L13FIXT}
	Phase rolling currents demand	I _{L13ROLT}
phase (Side T)	Phase peak currents demand	I _{L13MAXT}
(3.30 1)	Phase minimum currents demand	I _{L13MINT}
PT100	Temperature Pt1Pt8	T1T8

EVENT RECORDING (SER)

Number of events 1000
Recording mode circular

Trigger:

Start/Trip of enabled protection or control element Binary inputs switching (OFF/ON or ON/OFF)

Data recorded:

FAULT RECORDING (SFR)

Number of faults 20
Recording mode circular
Trigger:

Output relays of enabled protection or control element (OFF-ON) External trigger (binary inputs) IN1-1...IN1-16, IN2-1...IN2-16

DIGITAL FAULT RECORDER (DFR)

File format COMTRADE
Records depending on setting¹
Recording mode circular
Sampling rate 32 samples per cycle

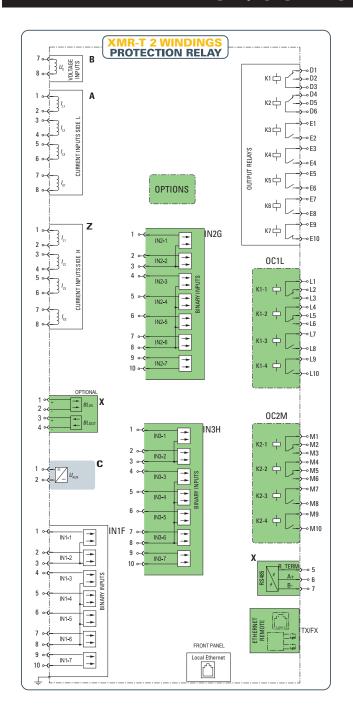
Trigger setup(*)

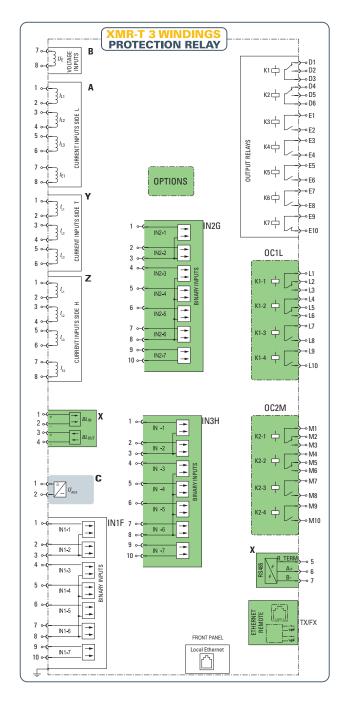
 Pre-trigger time
 0.05...1.00 s

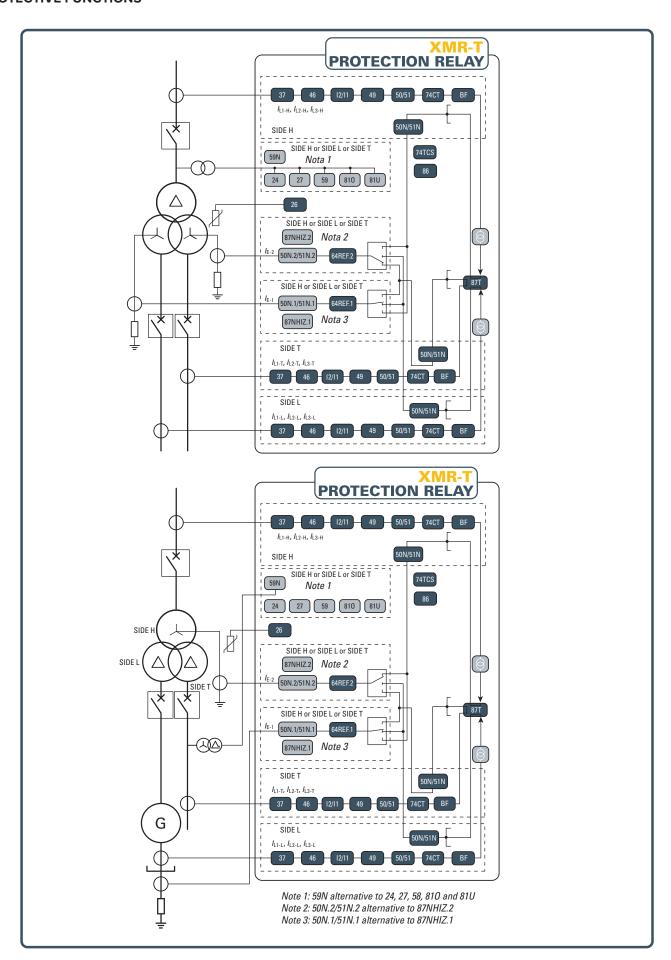
 Post-trigger time
 0.05...60.00 s

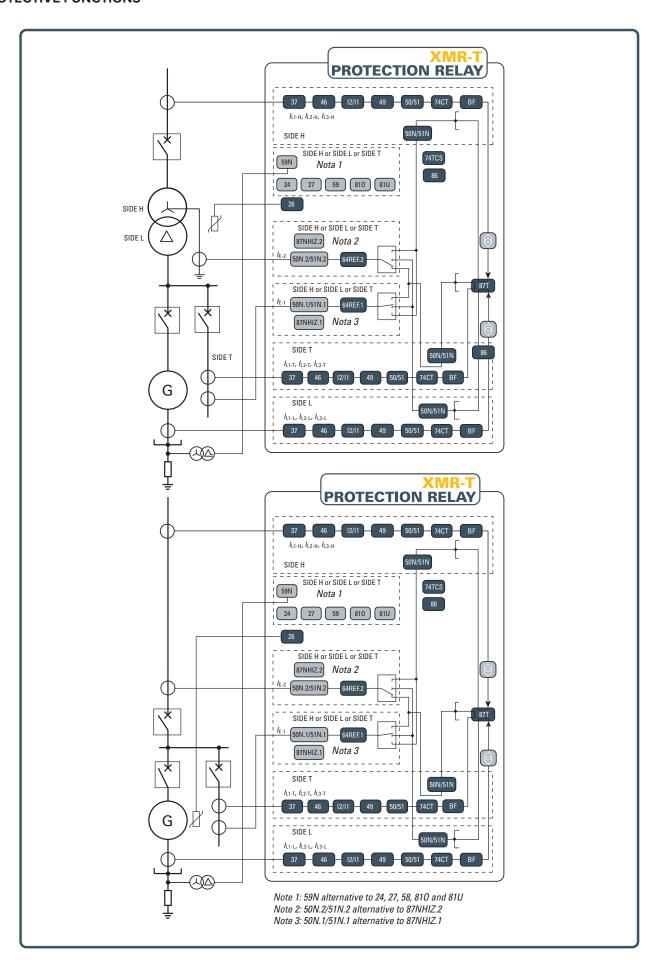
Set sample channels(*)

Instantaneous phase currents $i_{\rm L1}, i_{\rm L2}, i_{\rm L3}$ Instantaneous residual current $i_{\rm E}$

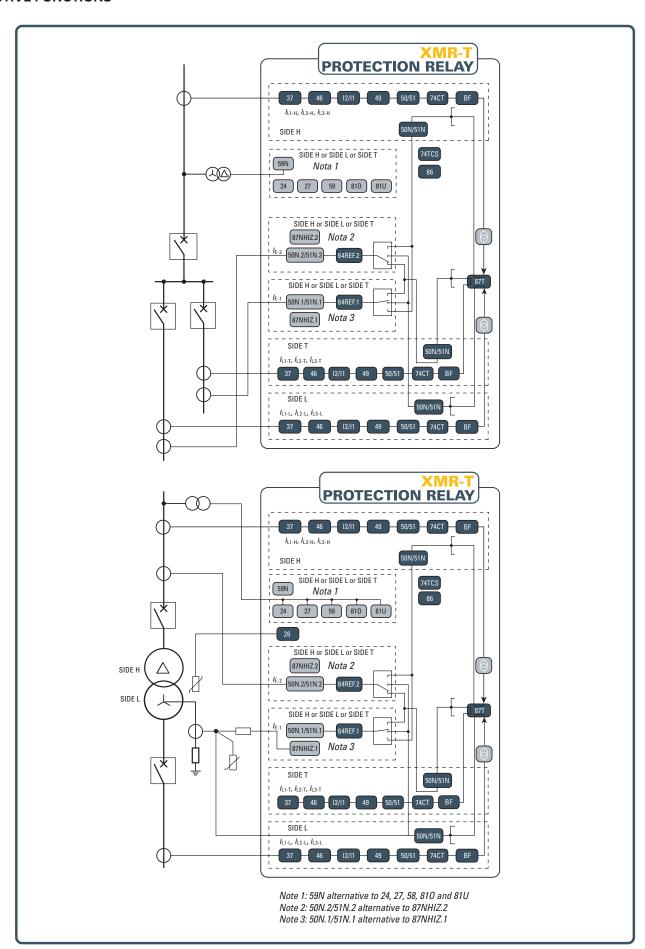

Number of settable analogue channels^(') from 1 up to 12

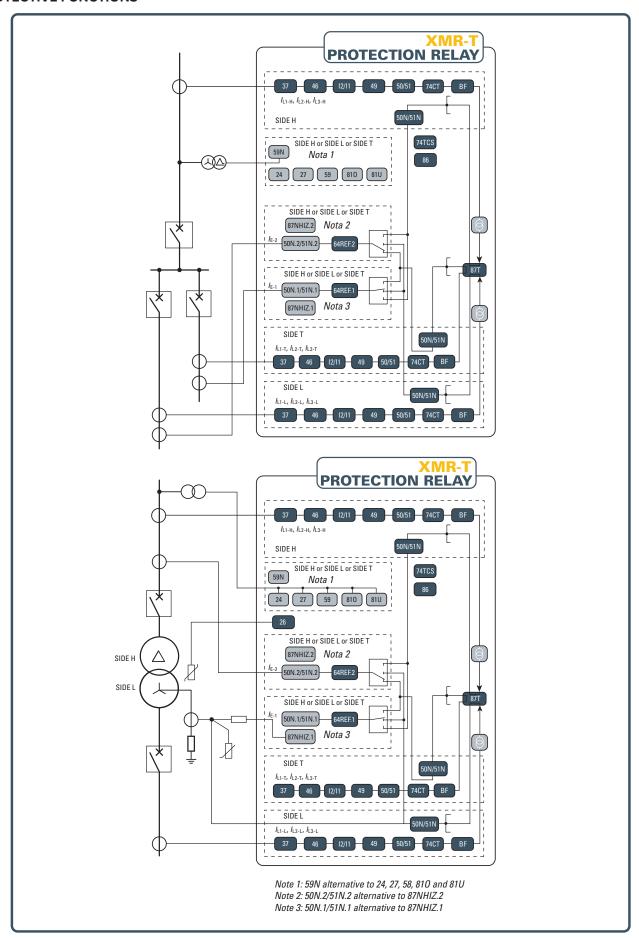

Number of settable digital channel(')

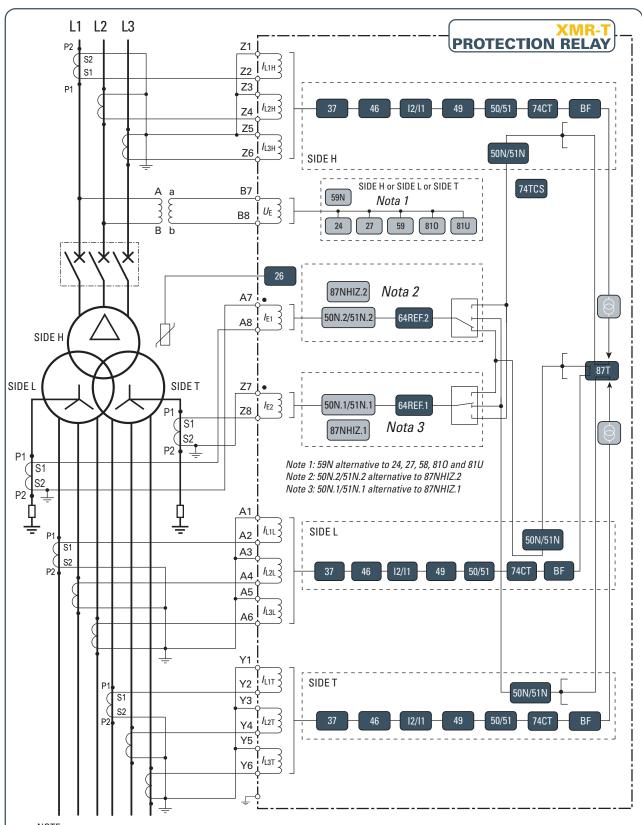

from 1 ut to 12:

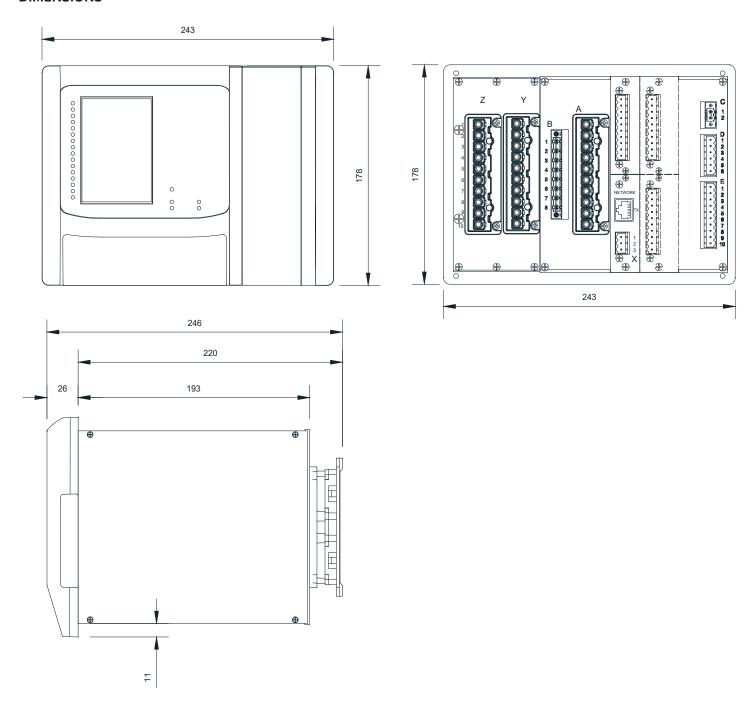

 $^{\prime\prime}$ Consult equipment manual for associated parameters description.

INPUT/OUTPUT BASIC SCHEME








NOTE

- Incoming currents to the protected transformer must match to the the reference current inputs of the relay, with current direction leaving the protected transformer must match current output from the current inputs of the relay.
- Incoming currents in the reference terminals of of the relay current inputs are considered positive, the outgoing negative.
- This convention applies to indicate the P1 CTs polarity toward the protected transformer.

Differential protection for three windings transformer

DIMENSIONS

Headquarters:

20139 Milano IT Piazza Mistral, 7

T. +39 02 57495701

F. +39 02 57403763

Factory:

35127 Padova IT

Z.I. Sud - Via dell'artigianato, 48

T. +39 0498947701

F. +39 0498701390

www.thytronic.it

Proudly made in Italy by Thytronic S.p.A.