

— Application

The relay type NA011 can be used in radial networks as feeder or power transformer protection.

In solidly grounded systems the residual overcurrent protection can be used on feeders of any length, while in ungrounded or Petersen coil and/or resistance grounded systems, the residual overcurrent protection can be used on feeders of small length in order to avoid unwanted trippings due to the capacitive current contribution of the feeder on external ground fault.

The NA011 protection relay may be shipped with traditional CTs or low power (LPCT) current inputs; for both versions, the residual overcurrent protection can use the measured (CTs or balanced transformer) or the calculated residual current.

- Protective & control functions

50/51 Phase overcurrent 50N/51N Residual overcurrent 79 Automatic recloser BF Breaker failure

— Phase current inputs

Traditional CTs

Three phase current inputs with secondary nominal currents independently selectable at 1 A or 5 A through DIP-switches.

Low power CTs

Three phase current inputs with primary nominal currents independently selectable through DIP-switches and software.

Residual current input

Measured residual current

One residual current input with secondary nominal current selectable at 1 A or 5 A through DIP-switches.

Calculated residual current

Residual current is calculated by the vector sum of the three phase currents, measured by three 1A or 5A CTs or by three LPCT type sensors.

Binary inputs

Three binary inputs are available with predefined functions:

- IN1 52b acquisition or external trip
- IN2 52a acquisition, external trip or CB Open command
- IN3 79 (Enable or Remote), external trip or CB Close command

— Output relays

Four output relays are available (one changeover contact); each relay may be individually programmed as normal state (normally energized or de-energized) and reset mode (manual or automatic). A programmable timer is provided for each relay (minimum pulse width). The user may program the function of each relay in accordance with a matrix (tripping matrix) structure.

— Construction

The NA011 protection relay case is suitable for flush or rack mounting.

— MMI (Man Machine Interface)

The user interface comprises a membrane keyboard, a backlight LCD alphanumeric display and eight LEDs.

- The green ON LED indicates auxiliary power supply and self diagnostics.
- The yellow LED START, no-latched, indicates Start of the I>, I>>, IE>, IE>> elements
- The red LED TRIP, no-latched, indicates Trip of the I>, I>>, I>>>, IE>, IE>> elements
- The red LED 1, latched, indicates Trip of the I>, I>>, I>>> elements
- The red LED 2, latched, indicates Trip of the IE>, IE>> elements
- The red LED 3, no-latched, indicates the CB state (CB open)
- The red LED 4, no-latched, indicates the CB state (CB closed)
- The red LED 5, no-latched, indicates the 79 (Reclosure) state:
- \bigcirc LED off = 79 disabled
- 🔵 LED on = 79 enabled
- LED slow blink = cycle in progress
- ED fast blink = reclosure fail

By means of the (Open) and (Close) keys, the circuit breaker commands may be issued.

Programming and settings

All relay programming and adjustment operations may be performed through MMI (Keyboard and display) or using a Personal Computer with the aid of the ThyVisor software.

The same PC setup software is required to set, monitor and configure all Pro_N devices.

— Control and monitoring

Several predefined functions are implemented:

- Cold load pickup (CLP) with block or setting change
- Circuit Breaker diagnostic.

Cold Load Pickup (CLP)

Cold load pickup element prevents unwanted tripping in case of temporary overcurrents produced when a feeder is being connected after an extended outage (e.g. motor starting).

Two different operating modes are provided:

- Each protective element can be blocked for a programmable time
- Each threshold can be increased for a programmable time.

— Firmware updating

The use of flash memory units allows on-site firmware updating.

— Communication

Two communication interfaces are implemented:

- One RS232 local communication front-end interface for communication with ThyVisor setup software
- One RS485 port using ModBus® RTU or IEC 60870-5-103 for communication with remote monitoring and control systems.

Self diagnostics

All hardware and software functions are repeatedly checked and any anomalies reported via display messages, communication interfaces, LEDs and output relays.

Anomalies may refer to:

- Hw faults (auxiliary power supply, output relay coil, ...).
- Sw faults (boot and run time tests for data base, EEPROM memory checksum failure, data BUS,...).

— Metering

NA011 provides metering values for phase and residual currents, making them available for reading on a display or to communication interfaces.

Input signals are sampled 64 times per period and the RMS value of the fundamental component is measured using the DFT (Discrete Fourier Transform) algorithm and digital filtering.

The measured signals can be displayed with reference to nominal values or directly expressed in amperes.

Data storage

Several useful data are stored into a non volatile memory.

- Sequence of Event Recorder
 - The event recorder runs continuously capturing in circular mode the last one hundred events upon trigger of binary input/output.
- Sequence of Fault Recorder

The fault recorder runs continuously capturing in circular mode the last twenty faults upon trigger of binary input/output and/or element pickup (start-trip).

• Counters

Digital Fault Recorder (Oscillography)^[1]

Upon trigger of tripping/starting of each function or external signals, the relay records in COMTRADE format:

- Oscillography with instantaneous values for transient analysis.
- RMS values for long time periods analysis.
- · Logic states (binary inputs and output relays).

Note 1- A licence for the digital fault recorder function is required. The oscillography records are stored in non-volatile memory.

SPECIFICATIONS

INPUT CIRCUITS GENERAL — Mechanical data **Auxiliary power supply Uaux** flush, rack Nominal value (range) 24...230 Vac/dc Mounting: 19...265 Vac / 19...300 Vdc Mass (flush mounting case) 1.2 kg Operative range 6 W (9 VA) Power consumption (max) Insulation tests **Phase current inputs** Reference standards EN 60255-5 High voltage test 50Hz Traditional CTs: 2 kV 60 s Nominal current In 1 A or 5 A selectable by DIP Switches Impulse voltage withstand (1.2/50 µs) 5 kV · Permanent overload Insulation resistance >100 MΩ • Thermal overload (1 s) 500 A Rated consumption (for any phase) \leq 0.002 VA ($I_{\rm n}$ = 1 A) Voltage dip and interruption \leq 0.04 VA ($I_n = 5$ A) Reference standards EN 61000-4-29 4 mm ring lugs suitable for M4 screws Connections EMC tests for interference immunity Low power CTs (according to IEC 60044-8 standard): Nominal primary current Ipn 1 MHz damped oscillatory wave EN 60255-22-1 1 kV-2.5 kV EN 60255-22-2 Electrostatic discharge 8 kV Extended primary current (selectable via DIP Switches and sw) Fast transient burst (5/50 ns) EN 60255-22-4 4 kV 50...1250 A Conducted radio-frequency fields EN 60255-22-6 10 V Maximum primary current 12.5 kA Radiated radio-frequency fields 10 V/m EN 60255-4-3 • Nominal secondary voltage ($I_{np} = 100 \text{ A}$) 22.5 mV High energy pulse EN 61000-4-5 2 kV Connections RJ45 plug Magnetic field 50 Hz EN 61000-4-8 1 kA/m **Residual current input** Damped oscillatory wave EN 61000-4-12 2.5 kV Nominal current I_{En} Ring wave EN 61000-4-12 2 kV 1 A or 5 A selectable by DIP Switch Conducted common mode (0...150 kHz) EN 61000-4-16 Permanent overload 10 V Thermal overload (1s) 500 A Rated consumption \leq 0.006 VA ($I_{En} = 1 \text{ A}$) Emission \leq 0.012 VA ($I_{En} = 5 A$) EN 61000-6-4 (ex EN 50081-2) Reference standards Conducted emission 0.15...30 MHz Class A **Binary inputs** Quantity Radiated emission 30...1000 MHz Class A Type dry inputs Climatic tests Max permissible voltage 19...265 Vac/19...300 Vdc Reference standards IEC 60068-x, ENEL R CLI 01, CEI 50 Max consumption, energized 3 mA Mechanical tests **OUTPUT CIRCUITS** Reference standards EN 60255-21-1, 21-2, 21-3 **Output relays K1...K4** Quantity Δ **Safety requirements** Command relays K1, K2, K4 Reference standards EN 61010-1 Type of contacts changeover (SPDT, type C) Pollution degree Nominal current Reference voltage 250 V Nominal voltage/max switching voltage 250 Vac/400 Vac Overvoltage Ш Breaking capacity: Pulse voltage 5 kV • Direct current (L/R = 40 ms) 50 W Reference standards EN 60529 • Alternating current ($\lambda = 0.4$) 1250 VA Protection degree: IP52 1000 W/VA · Front side Short duration current (0,5 s) 30 A · Rear side, connection terminals IP20 Signalling relays K3 **Environmental conditions** changeover (SPDT, type C) Type of contacts -25...+70 °C Ambient temperature Nominal current 8 A Storage temperature -40...+85 °C Nominal voltage/max switching voltage 250 Vac/400 Vac Relative humidity 10...95 % LEDs Atmospheric pressure 70...110 kPa Quantity 8 ON/fail (green) — Certifications 1 · Start (yellow) Product standard for measuring relays EN 50263 • Trip (red) CE conformity • Trip I>, I>>, I>>> (red) EMC Directive 2004/108/EC • Trip IE>, IE>> (red) Low Voltage Directive 2006/95/EC • 52a - CB position (red) IEC 60255-6 Type tests • 52b - CB position (red)

GENERAL SETTINGS

• 79 - Auto recloser (red)

— Kated values	
Phase CT nominal primary current (I_{np})	1 A5000 A
Residual CT nominal primary current (IEnp)	1 A5000 A
Reading	Direct / Relative

Relay output timers Minimum pulse width $(K_1t_{TR}...K_4t_{TR})$ 0.01...0.50 s

19200 bps

1200...57600 bps

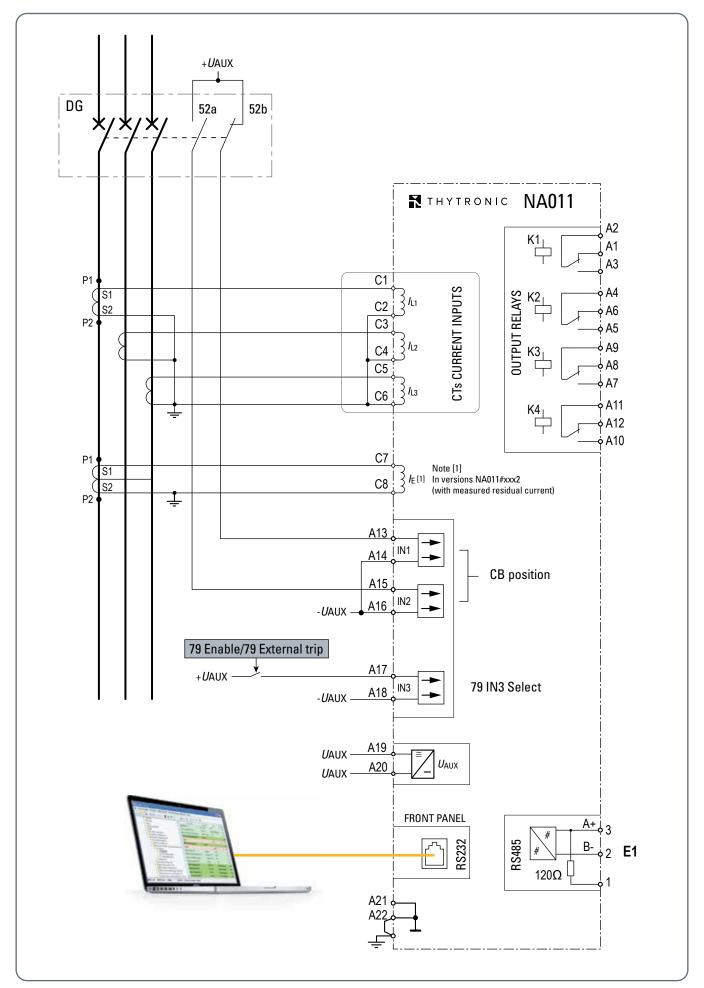
ModBus® RTU/IEC 60870-5-103

COMMUNICATION INTERFACES

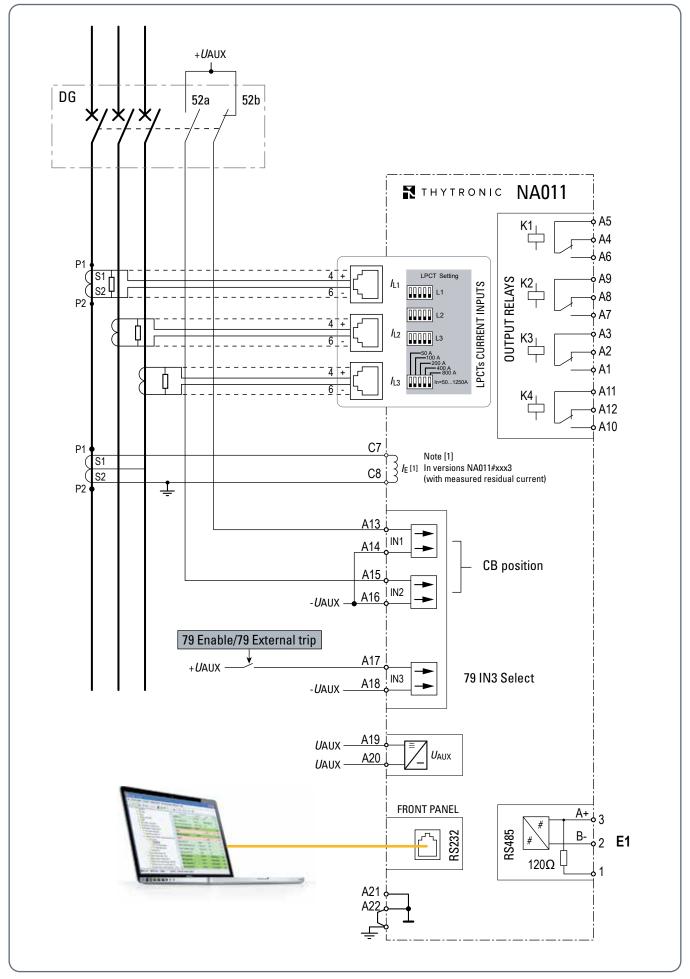
Local PC RS232

RS485 port

Protocol



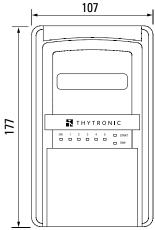
PROTECTIVE FUNCTIONS **Digital inputs** • IN1 OFF - 52b -Trip EXT Phase overcurrent - 50/51 IN2 OFF - 52a - Trip EXT - CB Open I> Element IN3 OFF - 79 Enable - 79 Remote - Trip EXT - CB Close DEFINITE, I> Curve type (I>Curve) IEC/BS A, B, C, ANSI/IEEE MI, VI, EI, I2T AutoReclose - 79 • CLP activation time (t_{CLP}>) 0.00...100.0 s • 79 ActiveMode On - Off I> Reset time (t>RES) 0.00...100.0 s • 79 CycleState Reset - On - Off On - Off • 79 Run Definite time • 79 Residual-time 50/51 First threshold definite time (/>def) 0.100...20.0 In • 79 LastEvent I>def within CLP (I_{CLP>def}) 0.100...20.0 In I>def Operating time (t>def) 0.03...10.00 s Counters Inverse time Counter Start I>, Counter Start I>>, Counter Start I>>> • 50/51 First threshold inverse time (/>inv) 0.100...2.50 In • Counter Start IE>, Counter Start IE>> • I>inv within CLP (I_{CLP>inv}) 0.100...10.0 In Counter Trip I>, Counter Trip I>>, Counter Trip I>>> I>inv Operating time (t>inv) 0.02...60.0 s Counter Trip IE>, Counter Trip IE>> I>> Element Counter 79 RR • CLP activation time (t_{CLP}>>) 0.00...100.0 s · Counter 79 SR • *I*>> Reset time (*t*>>_{RFS}) 0.00...100.0 s · Counter 79 RDR Counter 79 FR P Definite time • 50/51 Second threshold definite time (/>>def) · Counter 79 FR E 0.100...20.0 In · Counter 79 FR X • />>def within CLP (/CLP>>def) 0.100...20.0 In I>>def Operating time (t>>def) 0.03...10.00 s **Events recorder** I>>> Element Number of events 100 • CLP activation time (t_{CLP}>>>_{def}) 0.00...100.0 s Trigger: K1...K4, IN1, IN2, IN3 switching • *l*>>> Reset time (*t*>>>_{RES}) 0.00...100.0 s Data recorded: Definite time · Event counter $0...10^{9}\,$ • 50/51 Third threshold definite time (/>>>def) 0.100...20.0 *I*_n Event cause info (operating phase) L1, L2, L3 • />>>def within CLP (/CLP>>>def) 0.100...20.0 In Time stamp Date and time • I>>>def Operating time (t>>>def) 0.03...10.00 s **Faults recorder** Residual overcurrent - 50N/51N Number of faults 20 I_E> Flement Trigger: • I_E> Curve type (I_E>Curve) DEFINITE, Output relays activation (OFF-ON transition) K1...K4 IEC/BS A, B, C, ANSI/IEEE MI, VI, EI, I2T · External trigger (binary inputs) IN1, IN2, IN3 CLP activation time (teclp>) 0.00...100.0 s • Element pickup (OFF-ON transition) Start/Trip I_E> Reset time delay (t_E>_{RES}) 0.00...1.00 s Data recorded: Definite time • Fault counter (F-Number) 0...109 • Fundamental RMS phase currents 50N/51N First threshold definite time (/E>def) 0.005...5.00 /En *I*_{L1}, *I*_{L2}, *I*_{L3} • I_{E>def} within CLP (I_{ECLP>def}) 0.005...5.00 /_{En} · Fundamental RMS residual current /F I_{E>def} Operating time (t_{E>def}) 0.03...10.00 s Fault cause (F-Cause) start, trip Time stamp Date and time Inverse time 50N/51N First threshold inverse time (/E>inv) 0.005...2.00 I_{En} Digital Fault Recorder (Oscillography)^[1] • IE>inv within CLP (IECLP>inv) 0.005...2.00 /En File format **COMTRADE** • I_{E>inv} Operating time (t_{E>inv}) 0.02...60.0 s 2 [2] Number of records IF>> Element Recording mode circular • IE>> Curve type (IE>>Curve) DEFINITE, Sampling rate 16 per power frequency cycle IEC/BS A, B, C, ANSI/IEEE MI, VI, EI, I2T Trigger setup • CLP activation time (teclp>>def) 0.00...100.0 s · Pre-trigger time $0...63 T^{[3]}$ • IE>> Reset time delay (tE>>RES) 0.00...1.00 s Trigger from inputs IN1, IN2, IN3 Definite time Trigger from outputs K1...K4 • 50N/51N Second threshold definite time ($I_E >>_{def}$) 0.005...5.00 I_{En} General trigger from start / trip Start, Trip • IE>>def within CLP (IECLP>>def) 0.005...5.00 /_{En} Manual trigger ThvVisor • I_E>>_{def} Operating time (t_E>>_{def}) 0.03...10.00 s Start I>, I>>, ... Trip I>... • Trigger from start / trip Inverse time Data recorded on analog channels (Analog channel 1...4) • 50N/51N First threshold inverse time (/E>inv) 0.005...2.00 I_{En} Instantaneous currents *i*_{L1}, *i*_{L2}, *i*_{L3}, *i*_E • IE>>inv within CLP (IECLP>>inv) 0.005...2.00 I_{En} · Fundamental RMS phase currents I_{L1}, I_{L2}, I_{L3} I_E>>_{inv} Operating time (t_E>>_{inv}) 0.02...60.0 s · Fundamental RMS residual current lΕ **AutoReclose - 79** Data recorded on digital channel IN1, IN2, IN3 · Binary inputs state 79 Function mode (79 Mode) Rapid/Rapid+Slow Number of delayed reclosures (N.DAR) Output relays state K1...K4 0...5 Rapid reclosure dead time (trdt) 0.1...60 s • General trigger from start / trip General Start, General Trip Slow reclosure dead time (t_{sdt}) 1...200 s Note 1 - The oscillography records are stored in non-volatile memory Reclaim time (t_r) 1...200 s Note 2 - The time duration of the two records is dependent of settings; Slow reclosure fault discrimination time (t_d) 0...10 s e.g. the record duration with f = 50 Hz is 240 ms with following settings: Instantaneous iL1 current into "Analog channel 1" i_{L1} METERING & RECORDING • Instantaneous iL2 current into "Analog channel 2" iL2 • Instantaneous iL3 current into "Analog channel 3" İLЗ **Measured parameters** • Instantaneous iE current into "Analog channel 4" İE • Fundamental RMS phase currents I_{L1}, I_{L2}, I_{L3} Digital channels K1 • Fundamental RMS residual current Note 3 - T = number of power cycles


NA011 - Flyer - 10 - 2021

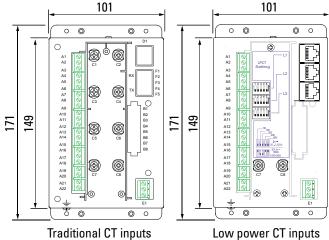
Example, with settings T = 4 the pre-trigger time is 80 ms with f = 50 Hz

— Example of connection diagram with traditional CT inputs and acquisition of CB states and Auto Reclose enable/start

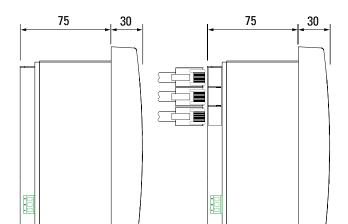
— Example of connection diagram with low power CT inputs and acquisition of CB states and Auto Reclose enable/start



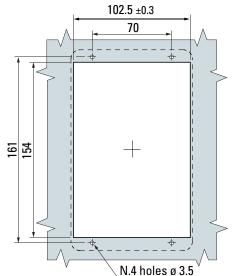
NA011 - Flyer - 10 - 2021

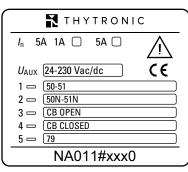

DIMENSIONS

REAR VIEW


FRONT VIEW

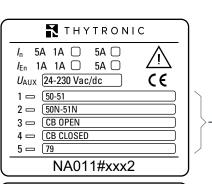
107


SIDE VIEW

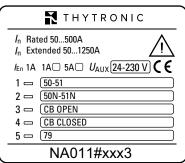

Traditional CT inputs

FLUSH MOUNTING CUTOUT

102.5 ±0



IDENTIFICATION LABEL



NA011#xxx1

Low power CT inputs

LEDS

Keys (CB open) and (CB close) are enabled

A PERSONALISED SERVICE OF THE PRODUCTION, A RAPID DELIVERY, A COMPETITIVE PRICE AND AN ATTENTIVE EVALUATION OF OUR CUSTOMERS NEEDS, HAVE ALL CONTRIBUTED IN MAKING US ONE OF THE BEST AND MOST RELIABLE PRODUCERS OF PROTECTIVE RELAYS. FORTY YEARS OF EXPERIENCE HAS MADE STANDARD THESE ADVANTAGES THAT ARE GREATLY APPRECIATED BY LARGE COMPANIES THAT DEAL ON THE INTERNATIONAL MARKET. A HIGHLY QUALIFIED AND MOTIVATED STAFF PERMITS US TO OFFER AN AVANT-GARDE PRODUCT AND SERVICE WHICH MEET ALL SAFETY AND CONTINUITY DEMANDS. VITAL IN THE GENERATION OF ELECTRIC POWER. OUR COMPANY PHILOSOPHY HAS HAD A POSITIVE REACTION FROM THE MARKET BY BACKING OUR COMMITMENT AND HENCE STIMULATING OUR GROWTH.

www.thytronic.it

Headquarter: 20139 Milano - Piazza Mistral, 7 - Tel. +39 02 574 957 01 ra - Fax +39 02 574 037 63 **Factory:** 35127 Padova - Z.I. Sud - Via dell'Artigianato, 26 - Tel. +39 049 894 770 1 ra - Fax +39 049 870 139 0

www.thytronic.it www.thytronic.com thytronic@thytronic.it